UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

Introduction

- Investigating trophic interactions between sharks and prey items can offer necessary information about ecosystem health and population controls.¹
- This study investigated trophic position (TP) estimates based on $\delta^{15}N$ values from bulk stable isotope analysis and compound specific isotope analysis of amino acids (CSIA-AA).
- Glutamic acid has been found to be significantly ¹⁵N-depleted in shark tissue², as well as in pinnipeds³, cetaceans⁴, and penguins⁵.
- This ¹⁵N-depletion is significantly higher in plasma tissue than muscle tissue².
- ¹⁵N-depletion in glutamic acid has contributed to low TP estimates^{2,3,4,5}.
- Sharks store urea, a waste product, in their tissues as an osmolyte 6,7 .
- In sharks, an intermediate of glutamic acid, glutamine, is used as primary nitrogen donator⁶.
- Glutamine synthesis deaminates glutamic acid twice, contributing to ¹⁵N-depletion^{3,6}.
- This study considered an alternative trophic amino acid (AA), threonine, to be used in place of glutamic acid in TP estimates for urea-producing species.
- This study also sought to understand the variability in TP estimates between muscle and plasma tissues.

Methods

- Sharks were captured in Biscayne Bay with circle-hook drumlines, sampled for full full blood and white muscle, then released (Figure 1).
- Amino acid sample preparation was carried out in the Close Lab at RSMAES following standardized method⁸.
- Samples were analyzed for CSIA-AA using gas chromatographyisotope ratio mass spectrometry (GC-IRMS) instrument with 1σ analytical uncertainty.
- Tissue samples were homogenized and freeze-dried.
- Samples were analyzed for bulk isotope analysis using GC-IRMS instrument with 1σ analytical uncertainty.
- TP estimates were compared using ANOVA single-factor tests ($\alpha =$ 0.05) and Tukey HSD pair-wise comparisons ($\alpha = 0.05$).
- TP estimates were compared between tissue types using student's ttests ($\alpha = 0.05$).

Fig. 1: Diagram of Sampling Locations GPS coordinates of locations where samples of the following species were collected: *Carcharhinus limbatus* (blacktip sharks); n = 6 *Carcharhinus leucas* (bull sharks); n = 9 *Negaption brevirostris* (lemon sharks); n = 7 *Rhizoprionodon terraenovae*(Atlantic sharpnose sharks); n = 1 *Carcharhinus acronotus* (blacknose sharks); n

Galeocerdo cuvier(tiger sharks); n = 2 *Ginglymostoma cirratum* (nurse sharks); n = 6

Investigating Trophic Position Estimates of Shark Plasma and Muscle Tissue Using Compound Specific and Bulk Stable Isotope Analysis

Taylor Jagolinzer¹

Committee Members: Dr. Hilary G. Close (Chair)¹, Dr. Catherine Macdonald¹, Dr. Kimberly Popendorf¹

¹Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL

taj66@miami.edu

Equations

TP can be estimated from bulk isotope analysis using the equation[#]: $TP_{Bulk} = [(\delta^{15}N_{consumer} - \delta^{15}N_{producer})/3.4] + I (Equation I)$

TP is estimated from CSIA-AA using the general equation[#]: $TP_{CSIA-AA} = [(\delta^{15}N_{trophic} - \delta^{15}N_{source} - \beta)/TDF_{AA}] + I (Equation 2)$

Table I: Components and sources of data for TP estimates. Tissue values were determined experimentally for multiple samples, while β and TDF values were chosen from a literature search and remained constant.

Fig 2. Components and sources of data for TP estimates. Tissue values were determined experimentally for multiple samples, while β and TDF values were chosen from a literature search and remained constant.

Fig. 3. TP calculations using amino acid nitrogen isotopic values ($\delta^{15}N$; Equation 4, Equation 3, threonine and phenylalanine, threonine and lysine) and bulk isotope analysis ($\delta^{15}N$; Equation I) for muscle tissue of all paired samples.

Bull M1 Bull M2 Bull M3 Bull F1 Bnose F1 Btip F1 Tiger F1 Lemon F1 Btip F2 Lemon M1 Btip M1 Lemon M2

References

I74

I. Bornatowski, H., Navia, A.F., Braga, R.R., Abilhoa, V., & Corrêa, M.F.M. (2014). Ecological import Brazil. *ICES*, 71(7), 1586–1592. 2. Horstmann, B. (2020). Determining trophic position of plasma and muscle tissue of sharks using con thesis]. University of Miami 3. Germain, L.R., Koch, P.L., Harvey, J., & McCarthy, M.D. (2013). Nitrogen isotope fractionation in

trophic position calculations. *Marine Ecology Progress Series*, 482, 265-277. 4. Matthews, C.J.D., Ruiz-Cooley, R.I., Pomerleau, C., & Ferguson, S.H. (2020). Amino acid δ15N ur understanding of isotopic fractionation in higher marine consumers. Ecology and Evolution, 10, 3450-34 5. Ohkouchi, N., et al. (2017). Advances in the application of amino acid nitrogen isotopic analysis in ecol

6. Kajimura, M., Walsh, P.J., Mommsen, T.P., & Wood, C.M. (2006). The dogfish shark (*Squalus acanthias*) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding. *Physiological and Biochemical Zoology*, 79(3).

;	β (‰)	Literature Source	TDF (‰)	Literature Source
	3.4	Chikaraishi et al. (2009)	7.6	Chikaraishi et al. (2009)
	2.2	Hannides et al. (2020)	6.3	Hannides et al. (2020)
	1.7	Ramirez et al. (2021)	-9.3	Bradley et al. (2015)
	3.3	Ramirez et al. (2021)	-9.9	Bradley et al. (2015)
024)	N/A	N/A	3.4	Bowes & Thorp (2015)
				_
				-
				-

TP (marine Thr-Phe TP (marine Thr-Lys)

Fig. 4. TP calculations using amino acid nitrogen isotopic values ($\delta^{15}N$; Equation 4, Equation 3, threonine and phenylalanine, threonine and lysine) and bulk isotope analysis ($\delta^{15}N$; Equation 1) for plasma tissue of all paired samples.

rtance of sharks and rays in a structural foodweb analysis in southern
npound specific stable isotope analysis [Unpublished undergraduate
amino acids from harbor seals: implications for compound-specific
nderestimation of cetacean trophic positions highlights limited 462.
ological and biogeochemical studies. Organic Geochemistry, 113, 150-

	TP (TAA-		TP (marine	TP (marine
	SAA)	TP (Glu)	Thr-Phe)	Thr-Lys)
TP (Glu)	P < 0.01			
TP (marine				
Thr-Phe)	P < 0.01	P < 0.01		
TP (marine				
Thr-Lys)	P < 0.01	P < 0.01	P > 0.05	
TP (bulk)	P > 0.05	P < 0.01	P < 0.01	P < 0.01

Discussion

- (Table 2).
- other TP estimates (Figure 3, 4, Table 2).
- significantly more similar (Figure 2).

Conclusions

- Anomalously low glutamic acid $\delta^{15}N$ values are likely responsible for low TP estimates in bulk and CSIA-AA isotope analysis.
- Higher TP estimates based on threonine may be viable and preferable compared to other TP estimates for urea-producing species.
- for TP in each tissue.
- rates^{10,11}.

Acknowledgements: Thank you to the members of the Close Lab at RSMAES and the UM Shark Research and Conservation Program. A special thank you to Dr. Hilary G. Close, Dr. Catherine Macdonald, and Dr. Kimberly Popendorf for their invaluable time, support, and advice on this project.

Table 2:

A pair-wise comparison of TP calculations using amino acid nitrogen isotopic values $(\delta^{15}N;$ Equation 4, Equation 3, threonine and phenylalanine, threonine and lysine) and bulk isotope analysis ($\delta^{15}N$; Equation I) within a tissue ($\alpha = 0.05$).

• Bulk isotope analysis found the strongest correlation between $\delta^{15}N$ and δ^{13} C in bull sharks; however, no other significant correlation was noted. • TP estimates from bulk isotope analysis did not significantly differ from TP calculated from CSIA-AA using an average of TAAs and SAAs

• TP estimates calculated using threonine were significantly higher than all

• TP estimates calculated using threonine made muscle and plasma tissues

• Sharks are expected to be located at TP 4 or higher, based on

observation, SCA, and controlled feeding studies^{9, 10,11,12,13,14}.

TP estimates based on threonine may allow for simultaneous processing of plasma and muscle tissue, rather than requiring a separate estimation

• Multiple tissue analysis may allow for the reconstruction of multiple timescales of feeding data due to differences in $\delta^{15}N$ incorporation

• Further work will focus on comparing threonine-based TP estimates to controlled feeding study data and SCA estimates.

^{7.} Trischitta, F., Faggio, C., & Torre, A. (2012). Living with high concentrations of urea: They can! Open Journal of Animal Sciences, 2(1), 32-40. 8. Hannides et al. (2009). Seasonal dynamics of midwater zooplankton and relation to particle cycling in the North Pacific Subtropical Gyre. *Progress in Oceanography*, 182, 102266. 9. Bradley, C.J., Wallsgrove, N.J., Choy, C.A., Drazen, J.C., Hetherington, E.D., Hoen, D.K., & Popp, B.N. (2015). Trophic position estimates of marine teleosts using amino acid compound specific isotope analysis. *Limnology and Oceanography Methods*, 13(9), 476-493. 10. Kim, S.L., Casper, D.R., Galván-Magaña, F., Ochoa-Díaz, R., Hernández-Aguilar, S.B., & Koch, P.L. (2012). Carbon and nitrogen discrimination factors for elasmobranch soft tissues based on a long-term controlled feeding study. Environmental Biology of Fishes, 95: 37-52. 11. Hussey, N.E., MacNeil, M.A., Olin, J.A., McMeans, B.C., Kinney, M.J., Chapman, D.D., & Fisk, A.T. (2012). Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. *Journal of Fish Biology*, 80(5), 1449-1484. 12. Cortés, E. (1987). Diet, feeding habits, and daily ration of young lemon sharks, Negaprion brevirostris, and the effect of ration size on their growth and conversion efficiency [Published Master's thesis]. University of Miami. 13. Falabella, V., Crespi-Abril, A., García, N., Crespo, E.A., & Coscarella, M.A. (2003). Consumption of marine mammals by broadnose sevengill shark Notorynchus cepedianus in the

northern and central Patagonian Shelf. Latin American Journal of Aquatic Mammals, 2, 101-107. 14. Martin, U. & Mallefet, J. (2023). The diet of deep-water sharks. Deep Sea Research Part I: Oceanographic Research Papers, 192, 103898.