ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC & EARTH SCIENCE

The effect of life history uncertainty on rebuilding times for the northwest Atlantic scalloped hammerhead shark (Sphyrna lewini)

Abstract

- This study uses the open-sourced modeling software JABBA to conduct Bayesian surplus production models of northwest Atlantic scalloped hammerhead sharks (Sphyrna lewini)
- A sensitivity analysis was conducted by varying life history characteristics and all three life history scenarios indicate the population is recovering well within a short timeframe

Introduction

- Large sharks are vulnerable to overfishing due to their large size and slow growth
- Many sharks are data limited, making it difficult to implement management plans (1)
- Northwest Atlantic *S. lewini* faced heavy fishing in the early 1980s and once again in the early 1990s
- They are protected under CITES Appendix II and the Endangered Species Act but are still caught illegally and as bycatch • Sought after for their large fins
- This study aims to assess the population of northwest Atlantic scalloped hammerheads and perform a sensitivity analysis based on a reasonable life history range
- The stock assessment can help determine if the population is overfished and what the timeline for recovery is

Methods

- Catch and catch per unit effort (CPUE) data were sourced from SouthEast Data, Assessment and Review (SEDAR)
- Just Another Bayesian Biomass Assessment (JABBA) (2) was run through R (3)
- 3 life history scenarios were created by varying life history characteristics:
- The intrinsic rate of population increase (r) was given a prior mean of 0.089, 0.104, and 0.121 for low, medium and high respectively (4,5)
- A minimum fixed observation error of 0.1 was set, an informative gamma prior of (0.001,0.001) was used and an initial biomass depletion prior of 0.9 with a CV of 0.25 was set
- Forward projections were created with fishing scenarios based on a proportion of MSY

Figure 1: *S. lewini* catch time series

Blaise Rohan, Elizabeth Babcock

Undergraduate Marine and Atmospheric Science Program, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami (914) 714-5126 Bxr462@miami.edu

Run	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Fsq	67%	70%	74%	77%	79%	81%	83%	85%	86%	87%
0%	67%	72%	76%	80%	83%	86%	87%	89%	90%	92%
20%	67%	71%	74%	78%	81%	83%	85%	87%	88%	89%
40%	67%	70%	73%	75%	78%	79%	81%	83%	84%	85%
60%	67%	69%	71%	73%	74%	75%	77%	78%	79%	80%
80%	67%	67%	68%	69%	70%	70%	71%	71%	71%	72%
100%	67%	66%	66%	65%	65%	64%	63%	62%	61%	61%

Figure 8: Probability that B > Bmsy for low life history scenario combined run

Run	2021	2022	2023	2024	2025	2026	
Fsq	62%	67%	71%	75%	78%	80%	
0%	62%	69%	75%	79%	83%	86%	
20%	62%	68%	73%	77%	80%	83%	90 D
40%	<mark>62%</mark>	67%	70%	74%	77%	79%	1
60%	62%	65%	68%	70%	72%	74%	
80%	62%	64%	65%	66%	68%	68%	
100%	62%	62%	62%	62%	61%	61%	

Figure 9: Probability that B > Bmsy for medium life history scenario combined run

69% 69% 70% 70%

61% 60% 59% 59%

Figure 10: Probability that B > Bmsy for high life history scenario combined run

80% 70% 71% 72% 72% 73% 73% 74% 74% 74% 74% 74%

100% 70% 70% 69% 68% 67% 66% 65% 65% 63% 63%

Discussion

(6)

- The high life history scenario is the most optimistic currently and in the future across all fishing levels • The low life history scenario is more optimistic than the medium scenario in the present
- The medium life history scenario is more optimistic in the future at low levels of fishing
- There is natural variability associated with the standard deviation and this could account for differences
- All life history scenarios have a similar and positive outlook for current stock status
- The rebuilding target for most sharks is 70% probability of recovery and it is reached in all scenarios except low and medium life history runs with fishing at 100% MSY (maximum sustainable yield)
- The status quo represents current fishing and passes 70% in all three models by 2023
- While these outlooks are positive, they do not measure spawning stock fecundity and incorporating this usually results in a more pessimistic analysis
- Commercial fishing is also more common in the Pacific and threatens *S. lewini* there

Future Studies

- JABBA does not factor in spawning stock fecundity • Simple Stock Synthesis is a good alternative for simple age structured modeling
- More complex age structured models would provide more accurate insight and predictions of population • Continuing to gather catch and CPUE data is important in updating current and future predictions of biomass

Acknowledgements

I would like to thank Dr. Elizabeth Babcock for her endless guidance. She was extremely generous in her time spent helping me learn everything I know. I would also like to thank Dr. Catherine Macdonald and Dr. William Drennan for their support in constructing and editing my thesis.

References

(1) Chang and Liu, 2009 (2) Winker et al., 2022 (3) R Core Team, 2022 (4) ICCAT, 2012 (5) SEDAR-77-AW04, 2022 (6) NOAA, 2023